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A modified Ewald method is described for calculating the potential
and its gradient for systems with long-ranged interactions and peri-
odic boundary conditions {PBC). Following the work of Natoli and
Ceperley, the division between the direct- and reciprocal-space
terms is optimized by minimizing the squared deviation of the ap-
proximate representation from the exact form. In simulations using
this method most of the computational effort is required in per-
forming the reciprocal-space summation. For comparable accuracy,
this method requires between one half and one third of the number
of reciprocal-space lattice vectors of the standard Ewald technique.
In addition our technique requires the choice of only a single param-
eter which controls the accuracy achieved, rather than the three
parameters required in the standard Ewald technique. We give for-
mulae (for the face-centered cubic (fcc), body-centered cubic {bce)
and simple cubic {sc) lattices), which allow for efficient evaluation
of the terms in the reciprocal-space summation. 1994 Academic
Press, Inc.

L. INTRODUCTION

In molecular dynamics and Monte Carlo simulations the
evaluation of the interactions between the particles is normally
a costly part of the computation. PBC are often used in simula-
tions of condensed matter systemns and, if the interactions be-
tween the particles are long-ranged, then the summation over
the periodic images may converge very slowly. The most popu-
lar methed for dealing with this problem is the Ewald method
[11. in which the expression for the interaction energy or poten-
tial is written in the form of two summations, one in direct-
space and the other in reciprocal-space, which both converge
fairly rapidly. Although Ewald’s method was invented before
the age of computers it is still in widespread use today.

Our particular interest is in quantum Monte Carlo calcula-
tions for condensed matter systems, which involve on the order
of hundreds of electrons and nuclei interacting via the Coulomb
potential. Normally the repeated evaluation of the interaction
terms, and similar terms in the wavefunction, for different
particle configurations is the most costly part of the calculation.
Compared with classical simulations the number of particles
is not large, but the accuracy required is comparatively high.
In Monte Carlo methods the particles are normally moved one
at a time and consequently the potential is evaluated at a point
in space, rather than evaluating the total potential energy of
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the particles. This methodology makes the use of the so-called
particle—particle and particle—-mesh methods [3] and the
multipole algorithm developed by Greengard [4] less effective.
In addition, Greengard's method is restricted to Coulomb poten-
tials, and aithough it is Q(N), it is inefficient unless the simula-
tion involves at least several thousands of particles. Conse-
quently the Ewald method and variants thereof have normally
been used. Although the optimized Ewald method was devel-
oped for use in quantum Monte Carlo calculations it may well
find applications in other areas such as classical Monte Carlo
and molecular dynamics methods. We have considered simula-
tion cells with high symmetry, but we do not assume any
symmelry for the arrangement of the particles within the simula-
tion cell, so that our method can be used in supercell studies
of perfect crystalline solids, defective solids, surfaces, and lig-
uids, etc.

In this paper we describe our derivation and evaluation of a
modified Ewald formula, which we have found to be both
accurate and efficient. We will discuss the evaluation of both
the potential and its gradient. These methods are suitable for
any long-ranged pairwise interaction potential, although we
will concentrate on the case of the Coulomb potential. Our
method for dividing the potential between the direct- and recip-
rocal-space summations is based on the ideas of Natoli and
Ceperley [2], although our formulation differs from theirs in
some important respects. When applying these methods, most
of the computational effort is spent in evaluating the reciprocal-
space sum. To facilitate efficient evaluation of the reciprocal-
space sum we have manipulated the various terms into conve-
nient forms which we tabulate for the sc, bee. and fec lattices.

iL. OPTIMIZED DIVISION BETWEEN DIRECT AND
RECIPROCAL SPACE

The Ewald formula for the Coulomb potential at a point r
due to a periodic array of point charges is, in atomic units,
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where {R} is the set of direct-space translation vectors of the
supercell lattice, {G} is the corresponding set of reciprocal-
space translation vectors, and () is the volume of the simulation
cell. The potential V.(r) is independent of the value of the
parameter k. which is chosen to give reasonable convergence
of both the direct- and reciprocal-space summations. The Ewald
formuia is one example of a type of expression for arbitrary
potentials which can be written in terms of direct- and recipro-
cal-space summations

V(r)=§R:f(\r—R|)+Zag;cos(G-r), (2)

where there are infinitely many pairs of functions f(r) and
Fourier coefficients ag which reproduce the correct potential
|6]. If the direct-space summation is truncated then the resulting
formula is not periodic and the standard procedure is to reduce
the displacement vector r into the Wigner—Seitz (WS) cell, so
that the effect of the truncation is minimized. With this conven-
tion V(r) can be represented exactly by Eg. (2}, even when the
direct-space summation is truncated, because the cosines form
a complete set (for potentials with inversion symmetry). In
practice the reciprocal-space summation must be truncated after
a certain number of vectors, Ng, and often one truncates the
direct-space summation so that it includes only the R = @
vector, giving

N

Vir) = f(ry + Z} ag, cos(G, - 1. (3)

We will use this form of approximation for V(r}, and we now
require the form of the radial function f(r) and Fourier coethi-
cients ag_which give the best approximation to the potential
V(r). Recently, Natoli and Ceperley [2] have developed a
method for determining the optimized functions f(r) and Fou-
rier coefficients g . based on minimizing the squared deviation
from the exact potential, i.e., minimizing A, where

I Mg 2
Ay= ﬁJ’ [V(r) = firy— Z ag, cos(G, r)] g(rydr, (4)

where the weight function g(r) is taken to be equal to unity
inside the WS cell and zero outside. In the next two sections
we will describe our implementation of these ideas for obtaining
good approximations to the potential and its gradient, which
differs from that of Natoli and Ceperley in several significant re-
spects.

111. CALCULATION OF THE OPTIMIZED FUNCTIONS
FOR THE POTENTIAL

It will be convenient to rewrite the reciprocal-space sum in
Eq. (4) in terms of shells of reciprocal-space lattice vectors.

RAJAGOPAL AND NEEDS

Noting that the Fourier coefficients «,_depend only on the shell
of reciprocal-space lattice vectors to which G, belongs, we have

N

N,
2 (‘!C” COS(G,, . r) = z a;
=1
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n
'

()

cos{G, 1)
w=1
N

= 2 a. H.Ar), (6)
F=1

where s labels the ¥, shells of reciprocal-space lattice vectors
and o labels the #, vectors in shell s. The determination of the
functions f(r) and a, which minimize Ay is simple if one notes
that, whatever the function f(r) is, the coefficients a, are alwavs
given by

= n‘dl_.QJ' [V(r) = f{n]H.(r) g(r) dr. (7

This result follows directly from the orthogonality of the cosine
functions. Substituting a, into Eq. (4} and setting the differential
with respect to the radial function f(r) equal to zero gives

4

fr) ’”ﬁ f g(r) sin 00 dd

-~ rﬁj V(r)g(r) sin 8d0dd

<11 (8)
a Z] a. {QJ [V(r) = f(N]H,.(r)g(r) dr}

x %fﬁ.(r)g(r)sm ededq&}.

Equation (8) is a Fredholm integral equation of the second kind
for f(r). There is some interest in isotropic approximations to
the Ewald potential [5], although such approximations are not
accurate enough for our purposes. Equation (8) shows that
the best isotropic approximation (in the least-squares sense) at
radius r is given by the average of V(r) over that portion of
the surface of the sphere of radius r which lies inside the
WS cell. We have solved Eq. (8) using a basis of Chebyshev
polynomials. We expand f(r) as a sum of Chebyshev polynomi-
als, T,, up to degree M,

M

iy =2 6T, ©)
where 7 is a scaled variable given by
2r — ux

F o (27 o) (10)

! Mdx
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and where r,,, is the maximum distance from the origin to the
boundury of the WS cell. Multiplying Eq. (8) by T,(#) and
integrating with respect to r gives the matrix equation

M l )
; {ﬁj I,(A)Ti(Fyg(r) dr} b,

= 5] VT ®em dr

N\ I l
B Z. n, {Q.( V(r)H(r)g(r} dr}

| : (1)
X {ﬁJ'H\(r)T}(?)g(r) dr}

N‘ i 1 I )
>p n {ﬁjﬂ(”)”‘(r)g(r) dr}
g {é[‘h"(")m?)g(r) dr} b,

Simple manipulations show that Eq. (11) is equivalent to Eg.
(12) of Ref. [2]. Eguation (11) must be solved to obtain the
coefficients b;, which can then be used, in conjunction with
Eqs. (7} and (9), to obtain the Fourier coefficients a,. The
maximum degree of the Chebyshev polynomials, M, used in
the expansion of f(r) and the maximum value, ¥, of the index
Jin Eq. (11). need not be related. We use N > M, which results
in an overdetermined set of linear equations which are solved by
singular value decomposition [8], giving the best approximate
solution in the least-squares sense.

Each of the integrals in Eq. (11) can be evaluated by integ-
rating over only the irreducible wedge of the WS cell and
multiptying by the number of equivalent wedges. For the cubic
cases considered in this paper there are 48 equivalent wedges
and, therefore, the saving is considerable. The integrais of prod-
ucts of Chebyshev polynomials may be evaluated efficiently
using the product formula

TOT(x} = 5[Ty(x) + Ty (0l (12)
Natoli and Ceperley [2] used a basis of quintic splines for
the radial basis functions, and the radial function f(r) was
constrained to vanish smoothly at a radius ry,. where rop is
the minimum distance from the origin to the surface of the WS
cell. If f(r) does not tend smoothly to a constant at (or inside
of) ry, then the resulting approximation to V(r) will have a
discontinuous first derivative at the surface of the WS cell,
which the exact V(r) does not have. However, the minimization
procedure used to determine f(r) and o, tends to give a function
S{r) which very nearly goes smoothly to a constant at r, and
we do not believe that it is advantageous to impose that f(r)
obeys this condition exactly.
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TABLE 1

The RMS and Maximum Errors in the Potential
for Different Numbers, A, of Shells of Reciprocal-
Lattice Vectors, Using the Optimized Ewald
Formula {Eq. (3)) for the fec Lattice

N, N RMS error Max. error
3 26 8.1 x 07! 1.0 % 107
8 112 25 % 1077 9.8 x 1!
13 258 1.0 > 10°* 34 x40

Note. Ni is the number of reciprocal-fattice vectors in
N, shells.

The Coulomb potential, V. (r}, diverges like 1/r at the origin.
We find it convenient to remove this divergence, and the poten-
tial V(r) that we use in Eq. 11 is

Vir) = V.(r) = l/r. (13
After solution of Eq. (11) the 1/r term may be added back into
the function f(r). The maximum degrees. N and M, of the
Chebyshev polynomials in Eq. (11} control the accuracy of the
solution of Eq. (8). Appropriate values will depend on the
problem at hand, but for the fce lattice we have used M =
30 — 50 and N = 60 — 250. The number, N,. of shells of
reciprocal-space lattice vectors used controls the accuracy of
the approximation (Eq. (3)) to the exact potential (Eqg. (1)).
Appropriate values of N, will depend on the requirements of
accuracy and computational speed. A convenient measure of
the error in the approximate representation of the potential is
the dimensionless root-mean square (RMS) deviation, defined
as LA ), where L is the lattice constant and A, is given by Eq.
(4). Also of interest is the maximum error, defined as the square
root of the maximum value of the integrand in Eq. (4),
multiplied by L. In Table [ we give the RMS and maximum
errors for the optimized Ewald sum for three values of the
numbers of shells of reciprocal-space lattice veclors, N, for
the fcc lattice. For comparison we give in Table 1I the RMS
and maximum errors for the standard Ewald formula of Eq.
(1) for seven values of &,, summing only over the R = 0 term
and with the value of x chosen to minimize the RMS error at
each &,. From these tables one can see that the number of
shells of reciprocal-lattice vectors required for a given accuracy
is between two and three times less for the optimized Ewald
sum.

IV, CALCULATION OF THE GRADIENT OF
THE POTENTIAL

Although the algorithm described in the previous section
works very well for approximating the potential, V(r), some
difficulties arise when calculating the gradient of the poten-
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tial, VV(r). In many quantum Monte Carlo calculations one uses
an approximate wavefunction which correlates the particles in
pairs. For electronic systems a typical form of the pair part of
the wavetunction is

e~ HF

uir) =;— (14)

¥

which is the sum of a long-ranged and a short-ranged term. In
addition 1o the (Ewald) sum of y over all pairs of electrons,
we also require the sums of Vu and V-u. In our implementation
we sum the short-ranged term in direct-space and perform
Ewald sums for the contribution of the long-ranged term to the
sum over all pairs of electrons of w and Vu. An Ewald sum is
not required for the ¥« contribution because it is short-ranged.

If we use the gradient of Eq. (3) and the functions f(r) and
a, determined as in Section III, we find that the relative errors
in the gradient are large close to the surface of the W§ cell.
In this region the magnitude of the gradient is small and the
oscillations arising from the reciprocal-space sum give large
relative errors in the gradient. Close to the origin the error in
the gradient is also significant (although the relative error is
small because the gradient is very large in this region). These
problems also arise with the standard Ewald formula of Eq.
{1}, but are less pronounced because one normally uses many
more lerms in the reciprocal-space summation. Natoli and Cep-
erley [2] also noted a similar problem in the calculation of
second derivatives, which they overcame by minimizing the
error in the representation of the second derivative of the poten-
tial instead of the potential itself. We have not followed this
procedure because in our simulations we use Ewald sums for
the potential and its first derivative only.

One idea might be to use the function g(r} in Eq. (4) to give
a larger weight to the regions close to the surface of the WS
cell, where the gradient is poorly described. However, this has

TABLE II

The RMS and Maximum FErrors in the Potential for
Different Numbers, N, of Shells of Reciprocal-Lattice
Vectors. Using the Standard Ewald Formula (Eq. (1)) for
the foo Lattice

N, Ng &L RMS error Max. error
3 26 5.0 1.3 X 107° 4.6 X 1077
8 112 6.3 94 X 107 5.6 X 107¢
13 258 7.3 1.5 x 1074 1.1 X 1074
18 3386 7.8 4.0 = 107° 3.7 X 107
23 560 83 1.3 X 1073 1.1 x 107
28 748 87 .0 x 107 4.5 X 1077
33 964 9.1 1.5 % 10 1.7 X 1070

Naote. Only the R = 0 term is used in the direct-space summation
and the value of L is chosen to minimize the RMS error. N 1s
the number of reciprocal-lattice vectors in N, shells.
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the disadvantage that the cosine functions are no longer
orthogonal with respect to the weight function, and the
minimization of Eq. (4) becomes more difficult, so we have
not followed this approach. Our approach is to minimize the
squared deviation from the exact gradient, i.e., t0 minimize
By. where

N
'

By = E]if [VV(r) ~Yf(r) — S a, VH\]_g(r) dr. (15)
=1

The minimization of By is catried out in a manner analogous
to that of Ay. The radial derivative, df/dr is expanded as a sum
of Chebyshev polynomials,

M
B> T, (16)
dr i=t
and the resulting matrix equation is
M 1
2 {ﬁ [ nTmem dr} ¢
O, r P (r)dr
N
-> ! ]J V.H, + V.H, + V.H, | g(r)dr
S G, O » v
(17)

« I j xH. + yH, +ZH.,
) r

S E 0 [xHHyH T
Z ) { al [ : } TP g dr}

\IU

1 xH. + \HH +zH ., _
{5 | [ ]T,—(r)g(r) dr}

where V, and H, denote the x-derivatives of the potential V(r)
and the reciprocal-space basis functions H, (Eq. (6)). and G
is the squared length of the reciprocal-space lattice vectors in
shell s. Equation (17) is written in a form in which each of the
integrals may be evaluated by integrating over the ureducible
wedge of the WS cell and multiplying by the number of such
wedges. For solution of Eq. (17) we remove the divergence
in the gradient of the Coulomb potential at the crigin, as in
Eq. (13).

We solve Eq. (17) using the same singular value decomposi-
tion method used for Eq. (11). Appropriate values of the maxi-
mum degrees of the Chebyshev polynomials, ¥ and M, are
similar to those used for Eq. (11). The Fourier coefficients, a,,
are then calculated from

jl T(F)g(r) dr}
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1 xdf ydf
= 2 g+ v, -2 A,
@ .G {[V_\ rdr] He [V' rdr] ., (18)

Using the method of this section we find that the accuracy of
the representation of the gradient of the potential near the origin
and at the surface of the WS cell i1s significantly better than
that given by the gradient of the potential obtained from the
method of Section 111

For some applications it may be desirable that the approxima-
tion used for the gradient of the potential is precisely equal to
the gradient of the approximation used for the potential itself.
This would not be the case if Eq. (11) was used to obtain the
approximation for the potential while Eq. (17) was used to
obtain the gradient. This problem may be circumvented by
using Eq. (17) for the gradient and integrating the radial function
df/dr 1o obtain an expression for the potential itself. This is
best done by integrating the Chebyshev representation of Eq.
(16); the constant of integration must be determined by a sepa-
raie calculation.

Y. EVALUATION OF THE RECIPROCAL-SPACE SUM

Evaluation of the potential at a point in space arising from
a particle and its periodic images proceeds as follows:

1. Reduce the displacement vector into the WS cell, giving
the reduced vector r.

2. Evaluate the contribution to the potential from the radial
function f(r).

3. Evaluate the contribution to the potential from the recipro-
cal-space sum.

Evaluation of the gradient is performed in an entirely analogous
manner. Efficient algorithms for carrying out operation (1) are
known for a number of shapes of simulation cell. For the sc
lattice the operation is trivial, while for the fec lattice (for which
the WS cell is a truncated octahedron) and the bee lattice (where
the WS cell is a regular dodecahedron) efficient algorithms are
given in Appendix F of [7].

To perform operation (2) we tabulate f{r) on a fine radial
grid and use a simple interpolation procedure, which is very
efficient. Operation (3) is the most computationally expensive
part of the algorithm, even when using the optimized Fourier
coefficients described in Sections IIl and 1V. In order to reduce
this cost we have developed a method in which the reciprocal-
space basis functions H,(r) are manipulated into forms which
allow rapid evaluation. When evaluating Fourier series it is
standard practice to use recurrence relations to calculate the
trigonometric functions, so as to avoid repeated calls to the
computer’s intrinsic trigonometric functions. Modern comput-
ers generally have very fast intrinsic trigonometrical functions,
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TABLE III

Formulae for the Reciprocal-Space Basis Functions, H, (Eq. (19),
for the sc Lattice

s n G? H,

i 6 1 2o + 5+ 7

212 2 Al + oy + Byl

38 3 8lafBiml

4 6 4 2at+ B+ v

5 24 5 day: T [yt By oy T oo toafl]

6 24 6 Blouflry: + ooy T iyl

T 12 B deof: + oy t Byl

& 30 9 BBy t afhy T afyl + 2a + Bt oyl

9 24 10 Aafl +oay + @ + ooy + By + Byl

10 24 11 BlwBry + afy + oyl

[ 8 12 Blenfyl

1224 13 dlagy; + afhs + Bys B b s + awy)

13 48 14 Bleafy + By, + aoffrys + oy + oy + oyl
14 6 16 2o+ 83+ vl

15 48 17 BlaaBry: + auflvy: + afirys] +

By, + By + e + o + ey + oyl

16 36 18 HBoys + avys + ] + Blawfiy + wfoy + afiyil
17 24 19 B[e iy + aafiys + aafioyi]

18 24 20 4|Bry + Bryv: + aufs + afly + oouy: + oary)

19 48 21 8leyflys + aufByy + asfays + ey + asBiys + Byl
20 24 22 Qlaaflhys + aafSys + oyl

Note. n, is the aumber of reciprocal-lattice vectors in shell s and G7 is the
squared length of the vectors in shell 5 in units of {27/1)%. The notation «, .
B.. and v, is defined in Eq. (20).

which reduce the benefits of recurrence relations. but it is still
generally more efficient to use recurrence relations.

We have developed a method which combines the efficiency
of the recurrence relations with particularly convenient formu-
lae for the basis functions H,. We write the basis functions in
the form

_ . 2mxn, 2ayn, ‘ 27z,
m“%]%ﬁ“[(L )+(£‘)+(L ﬂ,u%

where r = (x, v, z), L is the lattice constant, and the integers
n, n,, and n, define the appropriate reciprocal-space lattice
vectors for shell s. We have manipulated these formulae into
convenient forms for the first 20 shells of reciprocal-space
lattice vectors of the s¢, fee, and bec lattices and have tabulated
the results in Tables HI-V, where our notation is

_ _ {2mxn
)

(20)

e
|
o
ot
w
P
2
o3
=
\"—-——/

:3
|
[x}
3
w
e
[
=~
=
e
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The reduction in operation count from using the expressions
in these tables is significant. Further savings can be obtained
by noting that various combinations of the «,,, 3,. and v, defined
above occur in more than one shell, e.g., for the fee case the
combination a3, occurs in shells 1, 4, 10, and 18. These
combinationis may be calculated once and used in the different
shells as required. The gradients of the basis functions are easily
evaluated by differentiating the formulae given in the tables.
We also make use of the recurrence relation between cosines

o, = 2000, — aes 21
{a similar recurrence relation holds for the sines), These recur-
rence relations are highly efficient, but may become unstable
for small values of x. Alternative recurrence relations are known
10 be more stable (and more costly to evaluate) [8): however,
in practice we do not require values of n greater than about 6,
and we have found that Eq. (21) is perfectly adequate for
Our purposes.

VI. CONCLUSIONS
We have described a modified Ewald method for calculating

the total potential and its gradient arising from a periodic array

TABLE 1V

Formulae for the Reciprocal-Space Basis Functions, H, (Eq. (19),
for the bee Lattice

s oon G H,
112 2 A + By + ol
26 4 Zfa + B+ oyl
3 24 6 BlofBiy: + afyr + eyl
4 12 8 Haofh + Bryy + eyl
5 24 10 Ay + By + By +oavyy + anB + ]
6 8 12 Sl
T 48 14 BleaBrys ¥ aByr + eBn T ooy B o)
g 6 16 2o+ B+
9 36 18 BlaBys + @ + asBiy ] + dasys + Bays + oanfi]
W0 24 20 Byt ay + By + s T e+ oouf)
24 22 Bloafyy: + a:ffyy + afBayl
1224 24 S{euByy: + o3y, + o35y
13 72 26 Alogy + Beys + anys + Boys + asfh T e fBs] +
Blo Byys + By + ey, + ayy + auByn +
@3y
14 48 30 BloaBsy: + aafrys + aafhiys + ooflsy) T asfiy: + osBry]
15 12 32 4By, + agy, + aufl)]
16 48 34 Hesys + asfh + Bsys + Byys + aaBs + awys]
BleuByys + aaBiys + asfBavil
17 30 36 2o + By + v + 8lasfiys + auBys + aufyy]
18 72 38 S8la:Byys + By + asfhyy + oy + aafhys
T eyl + ey oBon T aBrye)
19 24 40 4B + arys + Bey: + By + dayr T agfds]
20 48 42 BlaiBiys + aflyys T asfys + auBoy + asBiys + asBiyl]
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TABLE V

Formulae for the Reciprocal-Space Basis Functions. A, (Eq. (19).
for the fee Lattice

s oo G H,

1 8 3 SlayBywl

26 4 ot Bty

3028 4By + oy T oasf]

4 24 11 ey + anffoyn + eyl

5 g 12 8[(11.61')’11

6 6 16 2ay + By + vl

T 23 19 BleBays + eafrys + iy

8 24 20 4o+ ay T oy + wfB + By + Gyl

9 24 24 Blaufy: + afy: + eyl

10 32 27 BlasfBiy + aBoyy + afiys + aafiyil

12 32 4By + arys + ouf3y]

1248 35 8lasBiys + o0Byys + oo+ asBay + oaaBeys +oafirydl
13 30 36 Blanflsys + aufays + i) + 2low + By + el
14 24 40 4By + Bv¥e T afd: + ay: + rYe + sl

15 24 43 Blafoy: + aaflyy + oyl

16 24 44 Sleafyy, + mBey: + ofyyl

17 8 45 BloyBry)

18 48 5t SlaByr + asfyr + Brvl + 8laBsys + afiys

+ syl :

19 24 52 4By + Boya + agys + o T ooy, + ool
20 48 56 Blwfiy t @By T ey + ooy T oufhye T Byl

Note. n, is the number of reciprocal-lattice vectors in shell s and G is the
sguared length of the veciors in shell 5 in units of 27/ LY. The notation o,
B., and v, is defined in Eq. (20).

Note. nr, is the number of reciprocal-lattice vectors in shell s and G is the
squared length of the vectors in shell 5 in units of (27/L)%. The notation a,.
8,. and vy, is defined in Eq. (20).

of particles with arbitrary long-ranged potentials. The method
is based on an optimized division between the direct- and
reciprocal-space terms, which minimizes the squared error in
the representation. The method requires the choice of a single
parameter, &,, the number of shells of reciprocal-lattice vectors
included in the sum, which controls both the accuracy and
the computational expense. This compares favorably with the
standard Ewald method (Eq. (1)), which requires up to three
pérameters to be chosen (the number of direct- and reciprocal-
space lattice vectors and the parameter «).

Between one-half and one-third of the number of shells of
reciprocal-space laltice vectors are required to give an accuracy
equivalent to the standard Ewald formula, (Eq. (1) including
only the R = ( term from the direct-space sum and with the
parameter x optimized for convergence of the reciprocal-space
sum). In simulations wsing the optimized Ewald method most
of the computational effort is required in the evaluation of the
reciprocal-space sum. We have provided formulae for the terms
in the reciprocal-space sum for the sc, bec, and fee lattices,
which allow efficient evaluation.
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